
Discussion 09:
Interpreters and Tail Calls

TA: Jerry Chen
Email: jerry.c@berkeley.edu

TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Agenda
1. Announcements

2. Calculator

3. Tail Calls

Misc Important Topics
MT 2 Grades

• Please talk to me if you have any concerns. If OH
don't work, can schedule some alternate meeting time

CS Culture

• There's been a lot of discussion on this topic

• It's very important to me, let me know if you have any
thoughts or suggestions

Announcements
Scheme due 4/20

• Start early!

Maps composition revision due 4/16

Calculator

Calculator
The humble Calculator langage:

• Polish-prefix notation

• Math only

• (Scheme… but less impressive)

Calculator
Supports argument nesting, and the 4 basic
arithmetic operations:

> (+ (* 4 500) (- 27 (/ 20 2)))

2017

Calculator
Expressions are Pairs… seem familiar?

Calculator expressions structured (mostly) the same
as Scheme expressions

Pair is the Python data structure equivalent for
Scheme cons

Calculator
Recall: evaluating call expressions

• Evaluate the operator

• Evaluate the operands

• Apply the operator to the operands

Tail Calls

http://xkcd.com/1270/

Tail Calls
Scheme is recursion only

• Usually, recursive calls will take up space (think
extra frames in the env diagram)

• Tail calls allow recursion using constant space
=> efficiency of iteration!

• Tail recursion is recursive calls performed at the
end ("tail") of a function

Tail Calls
Big idea: with a valid tail call setup, a recursive call
does not need anything from the current frame after
it returns

• Put another way, after we do the recursive call, we
do not need to return for any computation

• This is important because it means we can reuse
the current frame! (might still need info for
lookups)

Tail Calls
(define (fact n)

 (if (= n 0)

 1

 (* n (fact (- n 1)))))

Tail Calls
(define (fact n)

 (define (fact-tail n result)

 (if (= n 0)

 result

 (fact-tail (- n 1) (* n result))))

 (fact-tail n 1))

Tail Calls
Usually use a helper function to track state

Recursive call must be in a tail context to be a valid
tail call

Tail Context
Tail contexts are essentially places we know a
function terminates from ("tail end")

There's a list of them in the discussion handout. Think
about why they make sense!

Tail Calls
Summary

• Tail calls let us use constant space for
recursive calls

• To do a tail call, must perform recursive calls in
a valid tail context

• Valid tail contexts are at certain "tails" of
expressions, and must not require addl. work
after the recursive call

The End (of Tail Recursion)

