Discussion 09:
Interpreters and Tail Calls

TA: Jerry Chen
Email: jerry.c@berkeley.edu
TA Website: jerryjrchen.com/cs61a



mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Agenaa

1. Announcements
2. Calculator

3. Tail Calls



Misc Important Topics

MT 2 Grades

* Please talk to me if you have any concerns. It OH
don't work, can schedule some alternate meeting time

CS Culture
 There's been a lot of discussion on this topic

e |t's very important to me, let me know Iif you have any
thoughts or suggestions



Announcements

Scheme due 4/20
e Start early!

Maps composition revision due 4/16



Calculator

>>> (+ 1 (* 5 2))
File "<stdin>", line 1
(+1 (5 2))
FAN

SyntaxError: 1nvalid syntax
>>> screw 1t, 1'm going back to Scheme
File "<stdin>", line 1
screw 1t, 1'm going back to Scheme
AN

SyntaxError: 1invalid syntax
>>>




Calculator

The humble Calculator langage:
* Polish-pretix notation
* Math only

* (Scheme... but less impressive)



Calculator

Supports argument nesting, and the 4 basic
arithmetic operations:

> (+ (* 4 500) (- 27 (/ 20 2)))

20177



Calculator

Expressions are Pairs... seem familiar?

Calculator expressions structured (mostly) the same
as Scheme expressions

Pair is the Python data structure equivalent for
Scheme cons



Calculator

Recall: evaluating call expressions
* Evaluate the operator
* Evaluate the operands

* Apply the operator to the operands



Tail Calls

WHY DO YOU LIKE FOUNCTIONAL
PROGRAMMING S0 MUCH? WHAT
DOE.S IT ACTUALLY G£7 YOU?

TAIL RECURSION 15
ITS OWN REWARD.

e

http://xkcd.com/1270/




Tail Calls

Scheme is recursion only

* Usually, recursive calls will take up space (think
extra frames in the env diagram)

* Tail calls allow recursion using constant space
=> efficiency of iteration!

* Tail recursion is recursive calls performed at the
end ("tail") of a function



Tail Calls

Big idea: with a valid tail call setup, a recursive calli
does not need anything from the current frame after
It returns

* Put another way, after we do the recursive call, we
do not need to return for any computation

* This is important because it means we can reuse
the current frame! (might still need info tor
lookups)



Tail Calls

(define (fact n)
(L€ (= n 0O)
1

(* n (fact (- n 1)))))



Tail Calls

(define (fact n)
(define (fact-tail n result)
(L€ (= n 0)
result
(fact-tail (- n 1) (* n result))))

(fact-tail n 1))



Tail Calls

Usually use a helper function to track state

Recursive call must be in a tail context to be a valid
tail call



Tall Context

Tail contexts are essentially places we know a
function terminates from ("tail end")

There's a list of them In the discussion handout. Think
about why they make sense!



Tail Calls

Summary

* Tail calls let us use constant space for
recursive calls

* Jo do a tail call, must pertorm recursive calls In
a valid tail context

* \Valid tail contexts are at certain "tails" of
expressions, and must not require addl. work
after the recursive call



The End (of Tall Recursion

< - ", Y
- s ’ " r oo NANM
: e < BN
I‘ -
- ~=
— .
.
\ '
-



