CS61A Discussion 9:
Tail Calls and
Interpreters

TA: Jerry Chen
Email: jerry.c@berkeley.edu
TA Website: jerryjrchen.com/csb61a



mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Attendance

Form: tinyurl.com/jerrydisc

For the weekly question,
- please complete the quiz AND
- what would you like to see in disc?

(Of course, please only check in if you
showed up!)


http://tinyurl.com/jerrydisc

Agenaa

1. Week In Review
2. Halting Problem (fun diversion)

3. Tail Calls

4. Interpreters



Week In Review

MT2 — how was it?

* Regrades are open, please review the rubric and
submit it applicable

Lab 10 (Interpreters) - Due Friday
Hwo - Due Friday
Proj2 - Due 4/23

Maps Composition - Resubmit by next Friday



Halting Problem
("fun” diversion)

An interpreter is a program that understands other
programs

Great, we can write programs that analyze other
programs!

Are there any limitations to what we can calculate”



Halting Problem

The Halting Problem:
halts? (P, x):
return HALTS 1f P(x) will halt

return LOOP 1f P(x) will loop forever



Halting Problem

DEFINE DOES ITHALT (PROGRAM):
{

RETURN TRUE;
5

THE BIG PICTORE S0WTON
To THE HALTING PROBLEM

https://xkcd.com/1266/




Halting Problem

The program halts? cannot exist!

First shown by Alan Turing

There are many other such problems that can be
proved to be uncomputable

‘BENEDICT CUMBERBATCH IS OUTSTANDING"

dkdkok ook ok

IMITATION
GAME..

IN CINEMAS NOVEMBER 14



Halting Problem

trouble (P) :
LOOP forever 1f halt? (P, P) == HALTS

else exit the function

What will halt? (trouble, trouble)return?
Either way, it's a contradiction!

More of this topic (computability) in CS 70, CS 170,
CS 172



Tail Calls

WHY DO YOU LIKE FOUNCTIONAL
PROGRAMMING S0 MUCH? WHAT
DOE.S IT ACTUALLY G£7 YOU?

TAIL RECURSION 15
ITS OWN REWARD.

e

http://xkcd.com/1270/




Tail Calls

Scheme is recursion only

* Usually, recursive calls will take up space (think
extra frames in the env diagram)

* Tail calls allow recursion using constant space
=> efficiency of iteration!

* Tail recursion is recursive calls performed at the
end ("tail") of a function



Tail Calls

Big idea: with a valid tail call setup, a recursive calli
does not need anything from the current frame after
It returns

* Put another way, after we do the recursive call, we
do not need to return for any computation

* This is important because it means we can reuse
the current frame! (might still need info tor
lookups)



Tail Calls

(define (fact n)
(L€ (= n 0O)
1

(* n (fact (- n 1)))))



Tail Calls

(define (fact n)
(define (fact-tail n result)
(L€ (= n 0)
result
(fact-tail (- n 1) (* n result))))

(fact-tail n 1))



Tail Calls

Usually use a helper function to track state

Recursive call must be in a tail context to be a valid
tail call



Tall Context

Tail contexts are essentially places we know a
function terminates from ("tail end")

There's a list of them In the discussion handout. Think
about why they make sense!



Tail Calls

Summary

* Tail calls let us use constant space for
recursive calls

* Jo do a tail call, must pertorm recursive calls In
a valid tail context

* \Valid tail contexts are at certain "tails" of
expressions, and must not require addl. work
after the recursive call



lall Recursion

http://i.stack.imgur.com/gRIvz.jpg



Calculator

The humble Calculator langage:
* Polish-pretfix notation
* Math only

* (Scheme... but less impressive)



Calculator

Supports argument nesting, and the 4 basic
arithmetic operations:

> (+ (* 4 500) (- 26 (/ 20 2)))

2010



Calculator

Expressions are Pairs... seem familiar?

Calculator expressions structured (mostly) the same
as Scheme expressions

Pair is the Python data structure equivalent for
Scheme cons



Calculator

Recall: evaluating call expressions
* Evaluate the operator
* Evaluate the operands

* Apply the operator to the operands



