
CS61A Discussion 9:
Tail Calls and
Interpreters

TA: Jerry Chen
Email: jerry.c@berkeley.edu

TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Attendance
Form: tinyurl.com/jerrydisc

For the weekly question,
- please complete the quiz AND
- what would you like to see in disc?

(Of course, please only check in if you
showed up!)

http://tinyurl.com/jerrydisc

Agenda
1. Week in Review

2. Halting Problem (fun diversion)

3. Tail Calls

4. Interpreters

Week In Review
MT2 — how was it?

• Regrades are open, please review the rubric and
submit if applicable

Lab 10 (Interpreters) - Due Friday

Hw6 - Due Friday

Proj2 - Due 4/23

Maps Composition - Resubmit by next Friday

Halting Problem
("fun" diversion)

An interpreter is a program that understands other
programs

Great, we can write programs that analyze other
programs!

Are there any limitations to what we can calculate?

Halting Problem
The Halting Problem:

halts?(P, x):

return HALTS if P(x) will halt

return LOOP if P(x) will loop forever

Halting Problem

https://xkcd.com/1266/

Halting Problem
The program halts? cannot exist!

• First shown by Alan Turing

There are many other such problems that can be
proved to be uncomputable

Halting Problem
trouble(P):

LOOP forever if halt?(P, P) == HALTS

else exit the function

What will halt?(trouble, trouble)return?
Either way, it's a contradiction!

More of this topic (computability) in CS 70, CS 170,
CS 172

Tail Calls

http://xkcd.com/1270/

Tail Calls
Scheme is recursion only

• Usually, recursive calls will take up space (think
extra frames in the env diagram)

• Tail calls allow recursion using constant space
=> efficiency of iteration!

• Tail recursion is recursive calls performed at the
end ("tail") of a function

Tail Calls
Big idea: with a valid tail call setup, a recursive call
does not need anything from the current frame after
it returns

• Put another way, after we do the recursive call, we
do not need to return for any computation

• This is important because it means we can reuse
the current frame! (might still need info for
lookups)

Tail Calls
(define (fact n)

 (if (= n 0)

 1

 (* n (fact (- n 1)))))

Tail Calls
(define (fact n)

 (define (fact-tail n result)

 (if (= n 0)

 result

 (fact-tail (- n 1) (* n result))))

 (fact-tail n 1))

Tail Calls
Usually use a helper function to track state

Recursive call must be in a tail context to be a valid
tail call

Tail Context
Tail contexts are essentially places we know a
function terminates from ("tail end")

There's a list of them in the discussion handout. Think
about why they make sense!

Tail Calls
Summary

• Tail calls let us use constant space for
recursive calls

• To do a tail call, must perform recursive calls in
a valid tail context

• Valid tail contexts are at certain "tails" of
expressions, and must not require addl. work
after the recursive call

Tail Recursion

http://i.stack.imgur.com/qRIvz.jpg

Calculator
The humble Calculator langage:

• Polish-prefix notation

• Math only

• (Scheme… but less impressive)

Calculator
Supports argument nesting, and the 4 basic
arithmetic operations:

> (+ (* 4 500) (- 26 (/ 20 2)))

2016

Calculator
Expressions are Pairs… seem familiar?

Calculator expressions structured (mostly) the same
as Scheme expressions

Pair is the Python data structure equivalent for
Scheme cons

Calculator
Recall: evaluating call expressions

• Evaluate the operator

• Evaluate the operands

• Apply the operator to the operands

